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Abstract

This paper presents the results of developing acbrand price algorithm and an

ejection chain method for nurse rostering problentge approach is general enough
to be able to apply it to a wide range of benchmaukse rostering instances. The
majority of the instances are real world applicagioThey have been collected from a
variety of sources including industrial collaboratoother researchers and various
publications. The results of entering these algorg in the 2010 International Nurse
Rostering Competition are also presented and dsecusin addition, incorporated

within both algorithms is a dynamic programming hoet which we present. The

algorithm contains a number of heuristics and ofieatures which make it very

effective on the broad rostering model introduced.

1. Introduction

Rostering problems are found in a wide range ofkplaces and industries including
healthcare, manufacturing, transportation, emengsecvices, call centres and many
more. Using a computational search algorithm toresklthese problems results in
cost savings and better work schedules. As suskenng problems in various forms
have received a large amount of research atterti@n the years. This body of
research grew steadily throughout the 1960's, &% 80's and then accelerated in
growth as more powerful desktop personal compubErsame commonplace in
workplaces during the 1990's. As the computatiamal processing power has grown
so has the range and complexity of algorithms tlaat be applied and the size and
complexity of the instances that can be solved.dfooverview of rostering problems
and solution methodologies see [17]. A very largenacdated bibliography of
publications relating to staff scheduling is alsovyided by [16]. For a literature
review specifically aimed at the nurse rosteringpem, see [11].

As these review papers show, many different appremdiave been used to solve
nurse rostering problems. These include metahesifs, 8, 9, 20, 28], constraint
programming [14, 27, 36], mathematical programmif®y 3], other artificial
intelligence techniques (such as case-based rewspl) and hybrid approaches [12,
34]. Each method has strengths and weaknessesx&mple, as will be shown in this
paper, a mathematical programming approach maypleeta solve some instances to
optimality extremely quickly but on other instaneemay take infeasible amounts of
time or use too much memory. A metaheuristic, @dtiner hand, may be able to find
a good solution to difficult instances quite quicklut may not be able to find the
optimal solution to another instance which an exaethod can solve very quickly.
An obvious solution to this well-known phenomenaente@ combine and hybridise
different techniques. This is one of the princigbehind adaptive approaches such as
hyperheuristics.



The aim of this paper, however, is to provide nesuits (upper bounds and lower
bounds) for a large collection of diverse roster@nchmark instances. This is the
first occasion that a branch and price method leas lapplied to these instances. We
also introduce the dynamic programming algorithncivhis at the core of the branch
and price method and present a general rosterirdehwhich we used for all the
instances tested.

Branch and price is a branch and bound method iohwdach node of the branch and
bound tree is a linear programming relaxation whishsolved using column
generation. The column generation consists of &icesl master problem and a
pricing problem. Solving the pricing problem proesdnew negative reduced cost
columns to add to the master problem. The priciredplem can be considered as the
problem of finding the optimal work schedule foriadividual employee but with the
addition of dual costs, that is, additional (pobsibegative) costs based on which
shift assignments are made or not made. In nonfrodés of the branch and bound
tree, there may also be additional branching caimf on certain assignments that
must or must not be made.

Although this is the first time that branch andcprihas been applied to these
instances, it has previously been used on the mas$ering problem [18, 22, 25, 26].
All these earlier applications have similar struetand the same structure is adopted
here. The master problem is modelled as a set iogvproblem and solved using a
linear programming method such as the simplex ntetAde pricing problem is
formulated as a resource constrained shortest pathlem and solved using a
dynamic programming approach. The branch and btaeds generally too large for
a complete search and so heuristic, constraintchiag schemes are adopted in
which branching is performed on shift assignmemisthe roster. Although the
dynamic programming algorithms all use the samecjpies (dominance pruning and
bound pruning), the actual implementations are déget on the constraints and
objectives present in the pricing problem. For@ent overview of column generation
see [24] and for further reading on resource carstd shortest path problems see
[21].

In the next section, we discuss the challenge ofletiong such a wide variety of
instances and how it was solved. In section 3,mm®duce the benchmark instances
and section 4 presents the branch and price digoribection 5 contains the results of
applying the algorithms to the benchmark instantessection 6, we discuss the
International Nurse Rostering Competition and finigth conclusions in section 7.

2. Modelling the Problem

One of the most significant challenges in solvingaege diverse collection of
instances is developing a model which can be usedalf the instances with their
varying types of constraints and objectives. Inth# instances, there are common
types of constraints/objectives which are relativetraightforward to model. These
include the cover constraints (ensuring that tieeeecorrect or a preferable number of
employees assigned to each shift). However, thestygf constraints that can be
present in each employee’s work schedule can vgnjfisantly from instance to
instance. This is due to the reality of each wakplhaving its own set of rules and
requirements defined by different employers, em@ésy unions and national
legislation. Furthermore, each employee often hdgfarent contract to reflect such
features as full-time employment, part-time emplepmand night shift working. To



provide a system which can incorporate these vanst we developed a general
constraint based on pattern/string matching or nspexifically regular expressions.
Regular expressions are a powerful yet compact @fagpecifying patterns to be
found or matched. They are commonly used in Comteence and so we will not
expand upon the subject here. Instead, we refdersdo one of the many textbooks
on the subject such as [19]. Using a regular esprasconstraint in staff scheduling
problems appears to be a natural fit and this ighefirst example of its application
to these type of problems [13, 15, 31]. Howeverpider to fully include all the
variations in the instances we used, our approatitdader than some of this earlier
work. First though, we will illustrate by examplevi this constraint can be applied in
staff rostering problems. The basic idea behind ¢bestraint is to consider the
employee’s work schedule as the ‘search text’ ¢oimg the regular expressions to be
matched and the regular expressions to be matcaeedemuences of shifts. After
presenting the examples below, we also providegardi to illustrate how the
constraint works in practice. The figures show arskection of a single employee’s
schedule. The coloured squares labelled E, D amdpkesent early, day and night
shifts respectively. The highlighted days show whéne regular expression in
guestion has been matched.

Example 1: If a night shift ) can only be followed by another night shift oday
off then it could be modelled by the constraint %imaum zero matches of the pattern
‘N followed by any shift other thaN”. Note that we use the expression “maximum
zero” here as another way of saying this patterstmot appear at all. We use this
expression instead though because all the matchesxpressed as either a maximum
or minimum number of matches in order to provideenaodelling power.
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Figure 1 Violation of constraint example 1

Example 2. If an employee must not work more than five consige shifts then it
could be modelled by the constraint “maximum zegedahes of the patter@hy, Any,
Any, Any, Any, Any”” where Any is any shift (that is, not a day off).
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Figure 2 Violation of constraint example 2

Example 3: If an employee must have a minimum of two congeeunight shifts
then the constraint would be “maximum zero matafeke pattern ‘anything bud,
followed byN, followed by anything bul’™.
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Figure 3 Violation of constraint example 3




As can be seen, the constraint is based on the oflestring/pattern matching.
However, it is more like a regular expression axigreds some of the previous work
because we also allow:

= Grouping: Matching one of a group of shifts at ampo the sequence.

= Negation: Matching anything but a specific shifigpoup of shifts at a point in
the sequence.

= Alternation: Matching multiple patterns.

» Quantifiers: The pattern(s) must appear a minimurmaximum number of
times.

= Restricting the search text to a specific regiothefwork schedule.

= Only matching a pattern if it starts on a particaay in the work schedule.

This enables us to model some of the more compticabnstraints such as those
relating to weekend work or constraints that orpplg between certain dates in the
planning period. Using this general, regular exgigs constraint we can model many
of the constraints found in staff scheduling praide An example list is provided
below.

=  Minimum/maximum consecutive work days

=  Minimum/maximum consecutive non-work days

=  Day on/off requests

=  Shift on/off requests

=  Minimum/maximum number of shifts (optionally withia specific time
frame)

=  Minimum/maximum number of shifts of a specific tyfmotionally within a
specific time frame)

=  Minimum/maximum number of consecutive shifts of pedfic type
(optionally within a specific time frame)

=  Days off after a series of shifts of a specificeyp

= Shift rotations (which shifts can follow which disif

= Minimum/maximum shift rotations

=  Minimum/maximum number of weekends worked (or angoug of
days/dates)

=  Minimum/maximum number of consecutive weekends wdrk

Although all these constraints can be modelledguie regular expression constraint
there are though some constraints which cannopalticular, this includes those
relating to the minimum and maximum amount of wtirke an employee can be
assigned. For this type of constraint we developedeneral constraint called
Workload which is simply a minimum or maximum amount of wadime which can
be assigned to a single employee between any ttes dathe planning horizon.

A mathematical model of the problem is now presiénte
Sets

E = Employees to be schedulesl,] E .
T = Shift types to be assigned,]T .



D = Days in the planning horizon, 0{1,... |D[} .
Re= Regular expressions for employeea UR,

W= Workload limits for employee, wW,

Parameters

RU ;® = Maximum number of matches of regular expressionthe work schedule
of employeee

RL™ = Minimum number of matches of regular expressianthe work schedule of
employeee

RW, = Weight associated with regular expressidor employeee

WU 7= Maximum number of hours to be assigned to em@eyeithin the time
period defined by workload limw

VVL’:&” = Minimum number of hours to be assigned to em@@yeithin the time
period defined by workload limw

WW,, = Weight associated with workload linvitfor employeee
CU * = Maximum number of shifts of typgeaequired on day
CL™" = Minimum number of shifts of typerequired on day

CW, = Weight associated with the cover requirementhdt typet on dayd

Variables

Xaqg = 1 If employeee is assigned shift typeon dayd, O otherwise

RN, = The number of matches of regular expressionthe work schedule of
employees

WN,_, = The number of hours assigned to emplogregthin the time period defined
by workload limitw

CN,, = The number of shifts of tygeassigned on day

Constraints

Employees can be assigned only one shift per day



D X<l DedEdOD (1a)
tar

Objective Function

Min f (x) = Zi fei () + Z i fiai (X) (1b)
where

f,.(0 = maxo, (RN, - RUM™)RW, } (1c)

rOR,
f,»(x) = maxo, (RLT™ - RN, )RW, } (1d)

riR,
fa(0) = > max{o, (WN,,, —WU 2=\, } (Le)
fo ()= max{o, L™ —WN, W, } (19
fo4.5(¥) = Max{0, (CLL" = CN,,)CW, } (19)
fLa6(X¥) = max{0, (CN,, - CU 1™)CW,,} (1h)

The objective function (1b) is a weighted sum @& soft constraints (1c-1h). (1c) and
(1d) relate to the regular expression constraiits) and (1f) relate to the workload
constraints and (1g) and (1h) the cover constraiisen applying this model to an
instance in which one of the employee’s constraimta cover constraints is a hard
constraint we simply set the weight to a very higimber (significantly higher than
any of the other weights).

The significant advantage of this model is thataih incorporate the requirements of
many different workplaces without needing to beeaged. This means that the
algorithm does not need to be modified when a nemsitaint is encountered as long
as it can be modelled as a regular expressione¥xample, the benchmark instances
discussed in the next section could be describeliff@sent problems because most of
them have a different set of constraints and olest However, we were able to

model them all using this single model.

3. Benchmark Instances

In order to validate our algorithms and encourageencompetition and collaboration
between researchers working on rostering we haite dwollection of diverse and
challenging benchmark instances. The collection drasvn over several years and
has been drawn from various sources such as imalustllaborators (including
software companies and hospitals), scientific palhions and other researchers. The



collection continues to grow, is currently drawarr thirteen different countries and
the majority of the data sets are based on redbwostering scenarios. Table 1 lists
the instances. As can be seen, they vary in thgtHeof the planning horizon, the
number of employees, the number of shift types #red number of skills. Each

instance also varies in the number, priority angetyf constraints and objectives
present. The objectives were set by the organisatiat provided the data. For
example, some prefer to minimise overstaffing wasmather prefer to maximise staff
satisfaction by setting the weights for those diojes higher instead.

i Skill Best
Instance Staff tigleﬂs L(Zr;?g types  known Ref
Ozkarahan 14 2 7 2 0 [30]
Musa 11 1 14 3 175 [29]
Millar-2Shift-DATAL 8 2 14 1 0 [20]
Millar-2Shift-DATAL.1 8 2 14 1 0 [20]
LLR 27 3 7 1 301 [23]
Azaiez 13 2 28 2 0 [2]
GPost 8 2 28 1 5
GPost-B 8 2 28 1 3
QMC-1 19 8 28 1 13
QMC-2 19 3 28 3 29
WHPP 30 3 14 1 5 [36]
BCV-3.46.2 46 3 26 1 894 [6]
BCV-4.13.1 13 4 29 1 10 [6]
SINTEF 24 5 21 1 0
ORTECO01 16 4 31 1 270 [8]
ORTECO02 16 4 31 1 270 [8]
ERMGH 41 4 42 2 779
CHILD 41 5 42 1 2001
ERRVH 51 8 42 2 149
HEDO1 20 5 31 2 136 [33]
Valouxis-1 16 3 28 1 20 [35]
Ikegami-2Shift-DATAL 28 2 30 9 0 [20]
Ikegami-3Shift-DATAL 25 3 30 8 2 [20]
Ikegami-3Shift-DATA1.1 25 3 30 8 3 [20]
Ikegami-3Shift-DATA1.2 25 3 30 8 3 [20]
BCDT-Sep 20 4 30 1 100 [5]
MER 54 12 42 2 7081

Table 1 Benchmark Instances

The instances are available for download frbttp://www.cs.nott.ac.uk/~tec/NRP/
where all the required information on each instabest solutions, visualisations and
other software is also available. The data se$ flee not included within this paper
because of their large size.

Table 2 lists the instances used in the First ihatgonal Nurse Rostering Competition.
The instances were created by the competition eggesnand not released before the
competition. They are discussed further in Seddion



Instance Staff tigleﬂs Days Skills Instance Staff tigleﬂs Days Skills
sprint01 10 4 28 1 medium01 31 4 28 1
sprint02 10 4 28 1 medium02 31 4 28 1
sprint03 10 4 28 1 medium03 31 4 28 1
sprint04 10 4 28 1 medium04 31 4 28 1
sprint05 10 4 28 1 medium05 31 4 28 1
sprint06 10 4 28 1 medium_late01 30 4 28 1
sprint07 10 4 28 1 medium_late02 30 4 28 1
sprint08 10 4 28 1 medium_late03 30 4 28 1
sprint09 10 4 28 1 medium_late04 30 4 28 1
sprint10 10 4 28 1 medium_late05 30 5 28 2
sprint_late01 10 4 28 1 long01 49 5 28 2
sprint_late02 10 3 28 1 long02 49 5 28 2
sprint_late03 10 4 28 1 long03 49 5 28 2
sprint_late04 10 4 28 1 long04 49 5 28 2
sprint_late05 10 4 28 1 long05 49 5 28 2
sprint_late06 10 4 28 1 long_late01 50 5 28 2
sprint_late07 10 4 28 1 long_late02 50 5 28 2
sprint_late08 10 4 28 1 long_late03 50 5 28 2
sprint_late09 10 4 28 1 long_late04 50 5 28 2
sprint_late10 10 4 28 1 long_late05 50 5 28 2

Table 2 Competition Instances

4. The Branch and Price Algorithm

The implementation of the branch and price appro&wlows the previously
published algorithms mentioned in section 1. Howgegaite a lot of time was spent
improving the performance of the implementation.r Fexample, profiling the
algorithm reveals that during the column generatitypically about 5% of the
computation time is spent re-solving the restrigtebter problem (using the simplex
method) whereas the other 95% of the time is usedolving the sub-problems
(generating the new columns using the dynamic rogning algorithm). This meant
that the performance of the algorithm could be nsagtificantly improved through:

1) Reducing the number of calls to the pricing probkatver.
2) Improving the performance of the pricing problenven

Stabilisation (reducing the oscillation of the dwalues) was particularly important

and effective for the first. For the second, addial heuristics and bounding methods
were very effective, especially exploiting the féaat it is not necessary to find the
most negative reduced cost column each time (#ahe pricing problem does not
have to be solved to optimality until it is necegs® show that there are no more
negative reduced cost columns). These heuristiesdacussed in more detail in

section 4.1. For the stabilisation, we used thehowtpresented in [32] which is

relatively straightforward to implement and doeg depend on instance specific
parameters but was also very effective.



To solve the master problem we used the simplexoadedf the open-source, Coin-
OR linear programming solver (clp) [1] which we fmlito be fast and stable.

Within a time limit, two different heuristic branicly strategies are applied in the
branch and bound tree to try and find new soluti@nsper bounds). For the first
strategy, we simply branch on the variables inrfaster problem by selecting the
variable that is closest to one. This strategyroffeickly provides an upper bound but
this upper bound can usually be improved by th@ms@dranching strategy. In the
second strategy, we branch on individual employei-sssignments (constraint
branching). At each node in the tree, we selecethployee-shift assignment that has
the value closest to one when summing all the mastgblem variables (columns)
that contain this assignment. Columns that do wotan this assignment are then
removed from the master problem and when the mastdslem is re-solved the
pricing problem solver only generates columns wlgohtain this assignment (and
any other forced assignments from ancestor nod#seirtree). We carried out some
initial experiments with branching on the most fracal assignments (closest to 0.5)
instead. There did not appear to be much differanceolution quality but it was
slightly slower on average so chose to branch sigasents closest to one.

The initial solution is provided by applying theriadle depth search algorithm for
five seconds. If a provable optimal solution (lowweund equal to upper bound) is not
found within the time limit, then the best uppeuhd is returned.

4.1. The Pricing Problem Solver

We use a dynamic programming approach to solveptiving problem. That is, to
generate new columns where the columns are basicalv work schedules (also
called shift patterns) for individual employees.eTproblem can be classified as a
resource constrained shortest path problem. Figwsleows an example graph for an
instance with three shift typeEdrly, Day andNight). A path consists af connected
nodes between the source and sink node whiréhe number of days in the planning
horizon. Each shift type and a day off represeatribdes that can be chosen on each
day. Resources are collected along the path depgodi which nodes are part of that
path.

Day1 Day 2 Day 3 Dayn
A OFf ke ."I:' Off A 3 Off Off |\
. e * ’T‘ .. iy
h Y \ . 7T M, )

e

Figure 4 Example graph for the shortest path problem

The idea behind dynamic programming is to use bmgndnd dominance to prune
paths/nodes that can be proven to be unnecessaexp@nd. Although dynamic



programming can be very effective at solving certgpes of problem, in worst cases
the number of paths can still grow exponentially.

An interesting feature of our implementation isttlae solve the problem over a
number of iterations where at each iteration thaler of paths that can be expanded
is restricted to a maximum and the paths to expaadelected heuristically. If at the
end of an iteration the maximum limit was not reatlthen the problem was solved.
Otherwise, we try again with a higher limit but pitdy also with a new upper bound
(i.e. the best solution found at the previous ljmive also resume the search at the
point the limit was reached in order to avoid sfipeus repetitions. An outline of the
algorithm is provided by Figure 5. and discussechare detail below.
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48.
49.
50.
51.
52.

FUNCTI ON Gener at eShi ftPattern
Ret ur ns:
An array of solutions with an objective function value |ess than
I nitial Upper Bound. The objective function value = cost of
the pattern + dual costs for that pattern.
If MustBeOptimal is true then it will return the pattern with the
| owest obj ective function val ue.
If there are no solutions with objective function value |ess than
I'nitial UpperBound then it returns an enpty array.
I nput paraneters:
The enpl oyee to generate the shift pattern for.
Dual costs for each possible assignment on each day (may be negative).
Branchi ng constraints (assignments which nust or nmust not be nade).
A bound (Initial UpperBound). The objective function val ue of any
solutions returned nust be less than this.
A Bool ean val ue (MustBeOptinal) to indicate whether it nust return the
optimal solution or the first set of solutions it finds with objective
function value < Initial UpperBound.
SET Best Upper Bound : = | nitial Upper Bound
SET MaxArraySi zes := { 32, 128, 512, 2048, 8192, infinity }
Create four enpty arrays (CurrentArray, NextArray, Solutions and Best Sol utions)
Create an enpty shift pattern and nmake any assignnments whi ch nust be nmade
due to branching constraints (or other constraints) and add it to NextArray
FOR each MaxArraySize in MaxArraySi zes
SET MaxArraySi zeExceeded : = fal se
Clear the Solutions array
FOR each day (Day) in the planning period
SET CurrentArray as NextArray
SET NextArray as an enpty array
FOR each partially conpleted shift pattern (Pattern) in CurrentArray
FOR each possible shift assignment on Day (including a day off)
Make a copy of Pattern (NewPattern) and add the assignnent to NewPattern
Cal cul ate a | ower bound for this pattern and check for any constraint
violations. If there is a violation or the bound is >= Best Upper Bound t hen
di scard NewPattern and GOTO LABEL TryNext Assi gnnent (29.)
IF Day is the last day in the planning period THEN
Add NewPattern to Sol utions
ELSE
Do domi nance checks to see if NewPattern should be added to NextArray
and if there are any patterns in NextArray that are dom nated and can be
renmoved
I F NewPattern needs to be added THEN
I F Addi ng NewPattern (and renovi ng any dom nated patterns) woul d cause
MaxArraySi ze to be exceeded THEN
SET MaxArraySi zeExceeded : = true
Test heuristically replacing a pattern in NextArray with NewPattern
GOTO LABEL TryNext Assi gnnent (29.)
END | F
Add NewPattern to NextArray and renobve any that are doni nated
END | F
END ELSE
LABEL TryNext Assi gnnent
END FOR
END FOR
IF NextArray is enpty THEN
GOTO 46.
END | F
END FOR
I F Solutions is not enpty THEN
I F MaxArraySi zeExceeded = fal se OR Must BeOpti mal = fal se THEN
RETURN Sol uti ons
END | F
SET Best Sol uti onCost := the | owest obj. function value in Solutions
| F Best Sol uti onCost < Best Upper Bound THEN
SET Best Upper Bound : = Best Sol uti onCost
END | F
Clear the BestSolutions array and add the el ements from Sol utions
ELSE
| F MaxArraySi zeExceeded = fal se THEN
RETURN Best Sol uti ons
END | F
END ELSE
END FOR
RETURN Best Sol uti ons
END FUNCTI ON

Figure5 Pseudocode for the shift pattern generating algorithm
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The algorithm is able to solve the problem to progptimality or just return the first
set of solutions it finds with an objective functivalue below a bound. This bound
and the flag indicating whether to solve it to oplity are passed as parameters to
the algorithm. The other algorithm parameters ameiables which may change
between calls to the method: The dual costs (frben dover constraints) and any
branching constraints. (The branching constrairesaasignments which must or must
not be made in the shift pattern because theyveed in the branch and bound tree).

As already discussed, in the column generationrigtgo it is not necessary to solve
the pricing problem to optimality every time (thstit does not need to find the most
negative reduced cost column) but any negativecestiaost columns are acceptable.

The maximum array sizes to use at each iteratiaheflgorithm is set at step 3. In
the pseudocode, the values shown @re2, 128, 512, 2048, 8192, infinity }
which is the setting used for the results shownséction 5. Some testing was
performed varying the size of this set and theemin it but no clear best setting was
found when tested over all instances. However, reeige strategy of starting with
small values which are solved very quickly beforadgally moving to the larger
values appears to work best.

At step 15 (i.e. after a shift assignment is ma@de)ower bound is calculated (a
minimum objective function value) for a partiallpraplete pattern by looking at the
assignments already made, the objectives for tm@ia/ee and the dual costs. This
lower bound is then used to discard the patternsfgreater than or equal to the best
upper bound found so far. (Although not shown ia giseudocode this exact same
procedure is also done at step 5 where other assigis are made due to branching
constraints).

After creating a new partial pattern, it is necegda compare this pattern to the
partial patterns inNextArray for dominance. The dominance checking simply

involves comparing the patterns by examining thieles of the variablesN, and

WN_, used in the objectives (1c) to (1f) for the empgeahat the pattern is being

generated for. For example, if it is a minimum chjee (1f) or (1d) then the pattern
with the higher variable value is dominant for tludtjective. If it is a maximum
objective (1c) or (1e) then the pattern with thevdo variable value dominates. A
pattern dominates another pattern if it dominatesat least one objective and is not
dominated on any other objectives.

If the pattern is dominated by an existing pattéen it is discarded (to significantly
increase the computation speed the pattern thatndd@s it is moved to the start of
the NextArray, this has the effect that the next time the arsajerated through to
check for dominance there is a greater chancendsfia dominant pattern more
quickly). If the pattern dominates any existingteats then it is added tdextArray
and all the patterns that it dominates are remo¥fed.is identical to an existing
pattern (that is, neither are better for any ofdbgectives) then it is also discarded. If
it is incomparable to an existing pattern (thathgy each are better on an objective or
cannot yet be compared for an objective) then istnbe added. It may still dominate
other patterns though which can be removed. Itlss aseful to note that when
comparing two patterns, an objective which can li@ve to be already satisfied in
both patterns can be ignored in the comparison.

12



Dominance checking is the most time consuming pathe algorithm, particularly
when the number of patterns to compare is largeuiber of suggestions have been
made in the literature to speed up this processsdImclude maintaining sorted lists
or checking for dominance at different points ire thlgorithm. However, the
feasibility of these suggestions depends upon ype and number of objectives
present. We perform the dominance testing at s&but it is also possible to
compare patterns at steps 30 and 31 instead.

At step 23, the new pattern cannot be addedlaxtArray as it would cause the
maximum array size to be exceeded. However, theermpatwvith the worst objective
function value is replaced with the new patterit iias a better objective function
value. This is another heuristic rule which impretee speed of the algorithm.

At step 24 the algorithm moves to step 29 and #id#ferent shift assignment at the
current day TryNextAssignment is simply a label at the end of that loop which in
effect immediately moves to the start of the loaf &ies the next shift type). During

development we did experiment though within goimgtep 9 (move to the next day)
instead of going to the step 29 as it may appeae refficient to not test every shift

type if we already have a valid pattern. Howevenvas found to be much more

effective to continue generating new patterns hpgyto step 29. This is because we
are testing all possible shift types which althostgwer, as a result of the heuristics
and rules within lines 16-27 the patterns whichaenby the next day (step 9) are the
dominant patterns with lower partial objective ftiog values.

It is also worth mentioning that although adding Heuristics described had the most
significant impact on the performance of the aldpon, how the algorithm is
implemented can also have an effect on the spetrge@igorithm. This is particularly
the case with respect to memory management angbe of data structures used.

5. Results

In addition to providing results for the branch grece algorithm, we also compare
them to an ejection chain based approach calledhblar depth search (VDS).
Although the core of the algorithm is an ejectidraio method, it contains a number
of other features that have been added since itowgmally described in [10]. These
include incorporating a dynamic programming metiitid an iterative constructive
method at the start of the algorithm. (This is teme dynamic programming
algorithm used to solve the pricing problem in tiranch and price method). A
solution disruption and repair method (based onl8f also been added to extend the
algorithm if the time limit is not exceeded and sofast, hill climbing methods which
use the search neighbourhoods described in [7] Ih@en incorporated too. The
search neighbourhoods are defined by the assignaredé¢-assignment of shifts to
employees or the swapping of two shifts between ®voployees. Additional
neighbourhoods are then defined by extending tressech neighbourhoods by
considering assignments, de-assignments and swagphifts on multiple adjacent
days (sometimes called block moves).

The variable depth search operates by taking thelieidual moves and chaining
them into a single much larger move in order toapscfrom the local minima that
they would otherwise be restricted to. Heuristies @sed to dynamically select which
moves to link together. When a local minimum iscresd for this larger chain
neighbourhood a re-start heuristic is used. Theham@em involves completely un-
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assigning all the shifts assigned to a small nunobemployees and then re-building
their schedules using the dynamic programming ntetho

For the first set of results and comparisons wdiagphe branch and price algorithm
to each benchmark instance. We then repeated thegiments with the VDS method
but setting its maximum time limit parameter to @kathe same amount of time as
used by the branch and price algorithm. The resmdshown in Table 3.

The instances in Table 3 are ordered on our esthrdifficulty in solving them based
on all the testing we have done (note that thisdud correspond only to their size).
The problem is a minimisation problem and resuitbald indicate optimal solutions.
All experiments were performed on a desktop PC withintel Core 2 Duo 2.83GHz
processor.

Branch and Price VDS
Instance LBn((r)(()j(ét) UB t(s) UB t(s)
Ozkarahan 0 0 <0.1 0 0.1
Musa 175 175 <0.1 175 0.1
Millar-2Shift-DATAL 0 0 <0.1 300 0.1
Millar-2Shift-DATAL.1 0 0 <0.1 0 0.02
LLR 301 301 0.8 302 0.8
Azaiez 0 0 0.3 3 0.3
GPost 5 5 2.0 42 2.0
GPost-B 3 3 29.3 6 29.3
QMC-1 12.5 13 57.6 30 57.6
QMC-2 29 29 1.9 39 1.9
WHPP 5 5 17.6 2012 17.6
BCV-3.46.2 894 894 8.3 895 8.3
BCV-4.13.1 10 10 892.7 10 892.7
SINTEF 0 0 10.5 13 10.5
ORTECO01 270 270 69.3 485 69.3
ORTECO02 270 270 105.1 540 105.1
ERMGH 779 779 19.7 779 19.7
CHILD 149 149 19.8 161 19.8
ERRVH 2001 2001 976.0 2057 976
HEDO1 136 136 396.0 148 396
Valouxis-1 8 80 909.4 60 909.6
Ikegami-2Shift-DATA1 0 0 41.7 1 41.7
Ikegami-3Shift-DATA1 2 2 597.8 13 597.8
Ikegami-3Shift-DATAL.1 3 4 995.2 14 995.2
Ikegami-3Shift-DATA1.2 3 5 5411.9 9 5411.9
BCDT-Sep 100 100 6239.5 200 6239.5
MER 7079 7081 36002.F 7185 36002.71

Table 3 Resultsfor B& P and VDS on Benchmar k I nstances

14



For the branch and price we have also includedawer bounds found at the root
node of the branch and bound tree (that is, betftoeeinteger constraints must be
satisfied). The lower bounds are very close (ofgual) to the optimal solution
objective function value. The branch and price médtis able to solve most of the
instances to optimality but the computation timees&from less than one tenth of a
second up to ten hours on the hardest instanceéh®©targest (and hardest) instance
we set a ten hour time limit as beyond this, inings the algorithm had previously
encountered a pricing problem in this instancewbrch the dynamic programming
method ran out of memory (using over 2GB). This Wwasause the size of the state
space for the dynamic programming method is relatede number of shift types and
the length of the planning period and this instahas twelve shift types and a six
week horizon. Despite this, a very good upper booad still be found for this
instance within the ten hours.

For some of the easier instances the solutions aexelly integer at the root node

and so no branching was necessary. Others werdlglftgactional but could be made

feasible and optimal quite quickly in the branchl @ound tree. The harder instances
were very fractional though and the algorithm hadyd deep in the tree to find an

upper bound.

The variable depth search solves some of the gastances in less than a second but
compared to the branch and price some of the otiseits are worse. Despite this it is
still worth noting that all these solutions are lbatter than could be achieved by hand
(and of course in much less time also). One apgigranomalous result is the result
for WHPP which appears significantly worse. Howeverthis instance the weights
for the objectives are set such that some of tiectibes have a weight of one and all
others have a weight of 1000. The higher weightbgative appears to be quite
difficult to completely satisfy such that near opdl solutions in terms of the number
of objectives satisfied appear quite sub-optimatdmms of the objective function
value. Some of the other instances also have sirtalge steps in weights and
therefore also objective functions.

Only on one instance (Valouxis-1) does the variatdpth search find a better
solution than the branch and price method but tdees not appear to be an obvious
reason why it outperforms on this instance.

In the results, for both the algorithms we chosengle seed and identical parameter
settings for every instance. That is, we did natfggen many runs with different
settings and chose the best result from each geftior the instances Valouxis-1,
Ikegami-3Shift-DATAL.1, Ikegami-3Shift-DATAL.2 on hich the branch and price
did not find the optimal solution though, it has@afound the optimal solutions too in
approximately the same computation times but witferent algorithm settings such
as different seeds.

For a second set of experiments we restricted ltq@ithms to shorter computation

times. Based on feedback from end users we chose®&ihds and 10 minutes. The
feedback received suggested that if users want goldions quickly they prefer not

to wait more than 30 seconds. If they are williogwtait a bit longer for optimal or

near-optimal solutions they generally prefer notviit more than approximately 10
minutes. The results are shown in

Branch and price VDS
Instance uB t(s) uB t(s) UB t(s) uB t(s)
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Ozkarahan 0 <0.1 0 <0.1 0 0.1 0 0.1
Musa 175 <0.1 175 <0.1 175 30.0( 175 600.0
Millar-2Shift-DATA1 0 <0.1 0 <0.1 0 0.8 0 0.8
Millar-2Shift-DATAL.1 0 <0.1 0 <0.1 0 <0.1 0 <0.1
LLR 301 0.8 301 0.8 301 30.0( 301 600.0
Azaiez 0 0.3 0 0.3 0 121 0 121
GPost 5 2.0 5 2.0 16 30.0 8 600.0
GPost-B 3 29.3 3 29.3 6 30.0 6 600.0
QMC-1 48 30.0 13 57.6 36 30.0 16 600.0
QMC-2 29 1.9 29 1.9 31 30.0 30 600.0
WHPP 5 17.6 5 17.6| 2001 30.0 5 600.0
BCV-3.46.2 894 8.3 894 8.3 895 30.0f 895 600.0
BCV-4.13.1 10 30.0 10 30.0 10 30.0 10 600.0
SINTEF 0 10.5 0 10.5 6 30.0 2 600.0
ORTECO01 516 30.0 270 69.3( 405 30.0[ 465 600.0
ORTECO02 1550 30.0 270 105.0( 570 30.0f 510 600.0
ERMGH 779 19.7 779 19.71 779 30.0( 779 600.0
CHILD 149 19.8 149 19.8| 161 30.0f 161 600.0
ERRVH 12622 30. 2189 600J0 2380 30.0[ 2058 600.0
HEDO1 201 30.0 136 396.0| 168 30.0f 148 600.0
Valouxis-1 340 30.0 160 6000 120 30.0 60 600.0
Ikegami-2Shift-DATAL 16 30.0 0 41.7 6 30.0 0 327.7
Ikegami-3Shift-DATAL 47 30.d 2 597.8 32 30.0 13 600.0
Ikegami-3Shift-DATAL.1 38 30.4 23 600J0 32 30.0 14 600.0
Ikegami-3Shift-DATA1.2 35 30.4 26 600J0 37 30.0 9 600.0
BCDT-Sep 500 30.4 330 600|0 440 30.0] 210 600.0
MER 14217 30.0 12663 600J0 8759 30.0[ 7187 600.0
Table 4.
Branch and price VDS

Instance uB t(s) uB t(s) UB t(s) UB t(s)
Ozkarahan 0 <0.1 0 <01 0 0.1 0 0.1

Musa 175 <0.1 175 <0.1 175 30.0( 175 600.0

Millar-2Shift-DATA1 0 <0.1 0 <0.1 0 0.8 0 0.8

Millar-2Shift-DATAL.1 0 <0.1 0 <0.1 0 <0.1 0 <0.1

LLR 301 0.8 301 0.8 301 30.0( 301 600.0

Azaiez 0 0.3 0 0.3 0 121 0 121

GPost 5 2.0 5 2.0 16 30.0 8 600.0
GPost-B 3 29.3 3 29.3 6 30.0 6 600.0
QMC-1 48 30.0 13 57.6 36 30.0 16 600.0
QMC-2 29 1.9 29 1.9 31 30.0 30 600.0
WHPP 5 17.6 5 17.6| 2001 30.0 5 600.0

BCV-3.46.2 894 8.3 894 8.3 895 30.0f 895 600.0
BCV-4.13.1 10 30.0 10 30.0 10 30.0 10 600.0

SINTEF 0 10.5 0 10.5 6 30.0 2 600.0
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ORTECO1 516 30.0 270 69.3| 405 30.0] 465 600.0
ORTECO02 1550 30.0 270 105.0( 570 30.0f 510 600.0
ERMGH 779 19.7 779 19.7 779 30.0( 779 600.0
CHILD 149 19.8 149 19.8 161 30.0f 161 600.0
ERRVH 12622 30. 2189 6000 2380 30.0] 2058 600.0
HEDO1 201 30.0 136 396.0| 168 30.0f 148 600.0
Valouxis-1 340 30.0 160 600J0 120 30.0 60 600.0
Ikegami-2Shift-DATAL 16 30.0 0 41.7 6 30.0 0 327.7
Ikegami-3Shift-DATAL 47 30.0 2 597.8 32 30.0 13 600.0
Ikegami-3Shift-DATAL.1 38 30.¢ 23 6000 32 30.0 14 600.0
Ikegami-3Shift-DATAL.2 35 30.4 26 600J0 37 30.0 9 600.0
BCDT-Sep 500 30.4 330 600(0 440 30.0f 210 600.0
MER 14217 30.0 12663 600J0 8759 30.0] 7187 600.0

Table 4 Resultsfor B& P and VDS (30s & 10min) on Benchmark Instances

The results in Table 4 show that (as would be edgo@dhe more computation time
provided, the better the solutions. When the coatprt time is increased to ten
minutes, the branch and price method is able tthéurimprove twelve instances.
Increasing the computation time to ten minutestierVDS method further improves
fifteen instances.

Over 30 seconds the branch and price is betteight mstances, equal on eight and
worse on eleven. Over ten minutes it is better lemem instances, equal on ten and
worse on six. On all instances where the algoritlames equal they both found the
optimal solutions. It is also evident that undethbtime restrictions the VDS is
generally better on the larger instances and thadbr and price outperforms on the
smaller instances. It is also interesting to nb if the branch and price does not
find the optimal solution within the time limit, éhbest upper bound it returns is
generally worse than the solution found by the MiD$he same time. This suggests
the potential benefit of using both algorithms arailel if possible.

One apparently anomalous result is for the VDShenQRTECO1 instance where the
result is better for 30 seconds versus ten mindies. is, however, correct. The VDS
contains heuristics which automatically adjust bage the pre-defined computation
time and the instance size. In this case the heuwsrked very well on this instance.

6. 2010 International Nurse Rostering Competition

In 2010 the First International Nurse Rostering @etition was held. The

competition consisted of three ‘tracks’ each wiiffiedlent instances. For the first track
(sprint) the algorithms were allowed a maximumesf seconds computation time to
solve each instance. For the second track (medibenalgorithms were allowed ten

minutes and for the third track (long) ten hourseyeermitted. A number of instances
for each track were released at the start of tinepetition and at the end competitors
submitted their best solutions found within thedimlowed for each instance. The
results for the top five algorithms were verifieadathen tested by the organisers on
some hidden instances to produce the final rankioggach track. We entered the
competition using both the branch and price and/éin@ble depth search algorithms.
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We used the same model as developed for the bemnkhnstances to model the
competition instances and then tested the varidéyeh search and branch and price
algorithms on them. The resdl&re shown in Table 5 and Table 6.

Instance LB (root node) uB t(s)
sprint01 56 56 32.3
sprint02 58 58 16.8
sprint03 51 51 61.6
sprint04 58.5 59 29.6
sprint05 57 58 270.4
sprint06 54 54 27.4
sprint07 56 56 29.6
sprint08 56 56 14.0
sprint09 55 55 20.2
sprint10 52 52 22.9
sprint_late01 37 37 25.0
sprint_late02 41.4 42 16.1
sprint_late03 47.83 48 24.0
sprint_late04 72.5 73 131.1
sprint_late05 43.67 44 29.2
sprint_late06 41.5 42 151.4
sprint_late07 42 42 17.9
sprint_late08 17 17 10.3
sprint_late09 17 17 22.8
sprint_late10 42.86 43 27.9
mediumO01 240 240 34.2
medium02 239.25 240 41.1
mediumO03 235.5 236 49.6
mediumO04 236.22 237 171.3
medium05 302.1 303 150.7
medium_late01 156 157 600.0
medium_late02 18 18 17.1
medium_late03 28.25 29 94.0
medium_late04 34.33 35 152.2
medium_late05 106.67 107 189.0
long01 197 197 84.9
long02 218.5 219 108.2
long03 240 240 69.9
long04 303 303 120.3
long05 284 284 84.4
long_late01 235 235 162.8
long_late02 229 229 590.9
long_late03 218.5 220 600.2
long_late04 220.6666667 221 188.0
long_late05 82.5 83 373.7

Table 5. Results of the branch and price applied to the competition instances.

As shown in Table 5, although the branch and pme¢hod could solve most of the
instances to provable optimality, for the sprirdtances the time required was longer
than the maximum allowed of ten seconds. Thereforghose instances we used the

! The solutions are also available onlindatp://www.cs.nott.ac.uk/~te@nd also on request from the
authors.
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variable depth search. The results are shown ineTalfwe have also included the
results of testing the variable depth search onirte@ances within the competition
time limits).

Instance UB t (s] Instance UB t(s
sprint01 56 10 | medium01 244 60(
sprint02 58 10 | medium02 241 60(
sprint03 51 10 | medium03 238 60(
sprint04 59 10 | medium04 240 60(
sprint05 58 10 medium05 308 60(
sprint06 54 10 [ medium_late01 187 60p
sprint07 56 10 [ medium_late02 22 60p
sprint08 56 10 [ medium_late03 46 60p
sprint09 55 10 | medium_late04 49 60p
sprint10 52 10 [ medium_late05 161 60p
sprint_late01 37 10 | long01 198 3600(
sprint_late02 42 10 | long02 223 3600(
sprint_late03 48 10 | long03 242 3600(
sprint_late04 75 1¢ long04 305 3600(
sprint_late05 44 10 | long05 286 3600(
sprint_late06 42 10 | long_late01 286 3600p
sprint_late07 42 10 | long_late02 290 3600p
sprint_late08 17 10 | long_late03 290 3600D
sprint_late09 17 10 | long_late04 280 3600D
sprint_late10 43 10 | long_late05 110 3600D

Table 6. Results of the variable depth sear ch applied to the competition instances.

In Table 7, we show the rankings of the solutiores submitted for the instances
released by the competition organisers (fourteenpatitors entered the competition).

Instance Solution Rankinp Instance Solution Rankinp
sprint01 56 1°'= | medium01 240 1=
sprint02 58 1%= | mediumo02 240 1%'=
sprint03 51 1°= | mediumo3 236 1%'=
sprint04 59 1%= | mediumo4 237 1%=
sprint05 58 1%= | mediumos 303 1%=
sprint06 54 1%= | medium_late01 157 1°
sprint07 56 1°= | medium_late02 18 1°
sprint08 56 1%= | medium_late03 29 1°
sprint09 55 1%= | medium_late04 35 1°
sprint10 52 1°= | medium_late05 107 1°
sprint_late01 37 1%= | longo1 197 1=
sprint_late02 42 1%= | long02 219 1%=
sprint_late03 48 1%'= | long03 240 1%'=
sprint_late04 75 4 | long04 303 1%=
sprint_late05 44 1%= | long05 284 1%=
sprint_late06 42 1%'= | long_late01 235 1°
sprint_late07 42 1% | long_late02 229 1°
sprint_late08 17 1%'= | long_late03 220 1°
sprint_late09 17 1%'= | long_late04 221 1°
sprint_late10 43 1°' | long_late05 83 1=

Table 7. Competition Ranking
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On every instance our algorithms were first ortfiesjual. However, in the final
rankings we did not do so well due to some chatigesrganisers made to the hidden
instances. For the majority of the hidden instantles start date of the planning
horizon was changed (but not the horizon lengthg. 8 not foresee this and as a
result we incorrectly modelled some of the constgarelating to weekends. As such
our solvers’ objective function values for nearlil the hidden instances was
incorrect, which clearly had a very adverse efi@etthe final rankings (our final
competition rankings were: sprint" 4medium: 2% long: 29).

7. Conclusion

We have presented new results for benchmark nastering problems which will be
particularly useful to other researchers. The tesalso show that a branch and price
method can solve some instances very effectivady.dther instances the time and
resource requirements may be restrictive thouglweyer, with new heuristics and
other new ideas it may be possible to improve @réopmance further. For example,
more advanced branching schemes in the branch anttiliree or decomposing the
problem by splitting up the planning period maylgienprovements. Although the
variable depth search is not as successful asréimelv and price on some instances, it
is still a robust solver and able to find good sohs quickly. Another avenue for
future research may be further integration of the algorithms.

Within both algorithms a dynamic programming metli®dised which has also been
introduced. The algorithm uses a number of novehsdand heuristics which we
believe are general enough to be adapted to othblgmn domains also.

All the instances tested were modelled using amenedel, at the core of which is a
regular expression constraint. Although we cantaitrcto be the first to apply this
concept to staff scheduling problems we have exgatioe idea to make it even more
powerful and widely adoptable.

Finally, Figure 6 is a screenshot of a modellingl tor rostering problems (Roster
Booster). The software features the variable dsp#rch algorithm and the column
generation algorithm (for calculating lower boungsgsented here, and is freely
available for download at the website of Staff RostSolutions Limited
(http://www.staffrostersolutions.com(Staff Roster Solutions is a spin-out company
formed by the University of Nottingham to commellgidicense and develop its
research on rostering algorithms such as that predéere).
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