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Abstract 

This paper presents the results of developing a branch and price algorithm and an 
ejection chain method for nurse rostering problems. The approach is general enough 
to be able to apply it to a wide range of benchmark nurse rostering instances. The 
majority of the instances are real world applications. They have been collected from a 
variety of sources including industrial collaborators, other researchers and various 
publications. The results of entering these algorithms in the 2010 International Nurse 
Rostering Competition are also presented and discussed. In addition, incorporated 
within both algorithms is a dynamic programming method which we present. The 
algorithm contains a number of heuristics and other features which make it very 
effective on the broad rostering model introduced. 

1. Introduction 

Rostering problems are found in a wide range of workplaces and industries including 
healthcare, manufacturing, transportation, emergency services, call centres and many 
more. Using a computational search algorithm to address these problems results in 
cost savings and better work schedules. As such, rostering problems in various forms 
have received a large amount of research attention over the years. This body of 
research grew steadily throughout the 1960's, 70's and 80's and then accelerated in 
growth as more powerful desktop personal computers became commonplace in 
workplaces during the 1990's. As the computational and processing power has grown 
so has the range and complexity of algorithms that can be applied and the size and 
complexity of the instances that can be solved. For an overview of rostering problems 
and solution methodologies see [17]. A very large annotated bibliography of 
publications relating to staff scheduling is also provided by [16]. For a literature 
review specifically aimed at the nurse rostering problem, see [11]. 

As these review papers show, many different approaches have been used to solve 
nurse rostering problems. These include metaheuristics [5, 8, 9, 20, 28], constraint 
programming [14, 27, 36], mathematical programming [2, 3], other artificial 
intelligence techniques (such as case-based reasoning [4]) and hybrid approaches [12, 
34]. Each method has strengths and weaknesses. For example, as will be shown in this 
paper, a mathematical programming approach may be able to solve some instances to 
optimality extremely quickly but on other instances it may take infeasible amounts of 
time or use too much memory. A metaheuristic, on the other hand, may be able to find 
a good solution to difficult instances quite quickly but may not be able to find the 
optimal solution to another instance which an exact method can solve very quickly. 
An obvious solution to this well-known phenomenon is to combine and hybridise 
different techniques. This is one of the principles behind adaptive approaches such as 
hyperheuristics. 
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The aim of this paper, however, is to provide new results (upper bounds and lower 
bounds) for a large collection of diverse rostering benchmark instances. This is the 
first occasion that a branch and price method has been applied to these instances. We 
also introduce the dynamic programming algorithm which is at the core of the branch 
and price method and present a general rostering model which we used for all the 
instances tested. 

Branch and price is a branch and bound method in which each node of the branch and 
bound tree is a linear programming relaxation which is solved using column 
generation. The column generation consists of a restricted master problem and a 
pricing problem. Solving the pricing problem provides new negative reduced cost 
columns to add to the master problem. The pricing problem can be considered as the 
problem of finding the optimal work schedule for an individual employee but with the 
addition of dual costs, that is, additional (possibly negative) costs based on which 
shift assignments are made or not made. In non-root nodes of the branch and bound 
tree, there may also be additional branching constraints on certain assignments that 
must or must not be made.  

Although this is the first time that branch and price has been applied to these 
instances, it has previously been used on the nurse rostering problem [18, 22, 25, 26]. 
All these earlier applications have similar structure and the same structure is adopted 
here. The master problem is modelled as a set covering problem and solved using a 
linear programming method such as the simplex method. The pricing problem is 
formulated as a resource constrained shortest path problem and solved using a 
dynamic programming approach. The branch and bound tree is generally too large for 
a complete search and so heuristic, constraint branching schemes are adopted in 
which branching is performed on shift assignments in the roster. Although the 
dynamic programming algorithms all use the same principles (dominance pruning and 
bound pruning), the actual implementations are dependent on the constraints and 
objectives present in the pricing problem. For a recent overview of column generation 
see [24] and for further reading on resource constrained shortest path problems see 
[21].  

In the next section, we discuss the challenge of modelling such a wide variety of 
instances and how it was solved. In section 3, we introduce the benchmark instances 
and section 4 presents the branch and price algorithm. Section 5 contains the results of 
applying the algorithms to the benchmark instances. In section 6, we discuss the 
International Nurse Rostering Competition and finish with conclusions in section 7. 

2. Modelling the Problem 

One of the most significant challenges in solving a large diverse collection of 
instances is developing a model which can be used for all the instances with their 
varying types of constraints and objectives. In all the instances, there are common 
types of constraints/objectives which are relatively straightforward to model. These 
include the cover constraints (ensuring that there is a correct or a preferable number of 
employees assigned to each shift). However, the types of constraints that can be 
present in each employee’s work schedule can vary significantly from instance to 
instance. This is due to the reality of each workplace having its own set of rules and 
requirements defined by different employers, employees, unions and national 
legislation. Furthermore, each employee often has a different contract to reflect such 
features as full-time employment, part-time employment and night shift working. To 
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provide a system which can incorporate these variations, we developed a general 
constraint based on pattern/string matching or more specifically regular expressions. 
Regular expressions are a powerful yet compact way of specifying patterns to be 
found or matched. They are commonly used in Computer Science and so we will not 
expand upon the subject here. Instead, we refer readers to one of the many textbooks 
on the subject such as [19]. Using a regular expression constraint in staff scheduling 
problems appears to be a natural fit and this is not the first example of its application 
to these type of problems [13, 15, 31]. However, in order to fully include all the 
variations in the instances we used, our approach is broader than some of this earlier 
work. First though, we will illustrate by example how this constraint can be applied in 
staff rostering problems. The basic idea behind the constraint is to consider the 
employee’s work schedule as the ‘search text’ containing the regular expressions to be 
matched and the regular expressions to be matched are sequences of shifts. After 
presenting the examples below, we also provide a figure to illustrate how the 
constraint works in practice. The figures show a short section of a single employee’s 
schedule. The coloured squares labelled E, D and N represent early, day and night 
shifts respectively. The highlighted days show where the regular expression in 
question has been matched.  
 
Example 1: If a night shift (N) can only be followed by another night shift or a day 
off then it could be modelled by the constraint “maximum zero matches of the pattern 
‘N followed by any shift other than N’”. Note that we use the expression “maximum 
zero” here as another way of saying this pattern must not appear at all. We use this 
expression instead though because all the matches are expressed as either a maximum 
or minimum number of matches in order to provide more modelling power.  
 

 
Figure 1 Violation of constraint example 1 

 
Example 2: If an employee must not work more than five consecutive shifts then it 
could be modelled by the constraint “maximum zero matches of the pattern ‘Any, Any, 
Any, Any, Any, Any’” where Any is any shift (that is, not a day off). 
 

 
Figure 2 Violation of constraint example 2 

 
Example 3: If an employee must have a minimum of two consecutive night shifts 
then the constraint would be “maximum zero matches of the pattern ‘anything but N, 
followed by N, followed by anything but N’”. 
 

 
Figure 3 Violation of constraint example 3 
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As can be seen, the constraint is based on the idea of string/pattern matching. 
However, it is more like a regular expression and extends some of the previous work 
because we also allow: 
 

� Grouping: Matching one of a group of shifts at a point in the sequence. 
� Negation: Matching anything but a specific shift or group of shifts at a point in 

the sequence. 
� Alternation: Matching multiple patterns. 
� Quantifiers: The pattern(s) must appear a minimum or maximum number of 

times. 
� Restricting the search text to a specific region of the work schedule. 
� Only matching a pattern if it starts on a particular day in the work schedule. 

 
This enables us to model some of the more complicated constraints such as those 
relating to weekend work or constraints that only apply between certain dates in the 
planning period. Using this general, regular expression constraint we can model many 
of the constraints found in staff scheduling problems. An example list is provided 
below. 
 

� Minimum/maximum consecutive work days 
� Minimum/maximum consecutive non-work days 
� Day on/off requests 
� Shift on/off requests 
� Minimum/maximum number of shifts (optionally within a specific time 

frame) 
� Minimum/maximum number of shifts of a specific type (optionally within a 

specific time frame) 
� Minimum/maximum number of consecutive shifts of a specific type 

(optionally within a specific time frame) 
� Days off after a series of shifts of a specific type 
� Shift rotations (which shifts can follow which shifts) 
� Minimum/maximum shift rotations 
� Minimum/maximum number of weekends worked (or any group of 

days/dates) 
� Minimum/maximum number of consecutive weekends worked 

 

Although all these constraints can be modelled using the regular expression constraint 
there are though some constraints which cannot. In particular, this includes those 
relating to the minimum and maximum amount of work time an employee can be 
assigned. For this type of constraint we developed a general constraint called 
Workload which is simply a minimum or maximum amount of work time which can 
be assigned to a single employee between any two dates in the planning horizon.  

A mathematical model of the problem is now presented.  
 
Sets 
 
E = Employees to be scheduled, Ee ∈ . 

T = Shift types to be assigned, Tt ∈ . 
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D = Days in the planning horizon, },...,1{ Dd ∈ . 

Re = Regular expressions for employee e, eRr ∈  

We = Workload limits for employee e, eWw ∈  

Parameters 
 

max
erRU = Maximum number of matches of regular expression r in the work schedule 

of employee e 
 

min
erRL = Minimum number of matches of regular expression r in the work schedule of 

employee e 
 

erRW = Weight associated with regular expression r for employee e 

 
max
ewWU = Maximum number of hours to be assigned to employee e within the time 

period defined by workload limit w 
 

min
ewWL = Minimum number of hours to be assigned to employee e within the time 

period defined by workload limit w 
 

ewWW = Weight associated with workload limit w for employee e 

 
max
tdCU = Maximum number of shifts of type t required on day d  

 
min
tdCL = Minimum number of shifts of type t required on day d  

 

tdCW = Weight associated with the cover requirements of shift type t on day d  

 
Variables 
 
 xetd = 1 if employee e is assigned shift type t on day d, 0 otherwise 

 

erRN = The number of matches of regular expression r in the work schedule of 

employee e 
 

ewWN = The number of hours assigned to employee e within the time period defined 

by workload limit w 
 

tdCN = The number of shifts of type t assigned on day d 

 
Constraints 
 
Employees can be assigned only one shift per day 
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The objective function (1b) is a weighted sum of the soft constraints (1c-1h). (1c) and 
(1d) relate to the regular expression constraints, (1e) and (1f) relate to the workload 
constraints and (1g) and (1h) the cover constraints. When applying this model to an 
instance in which one of the employee’s constraints or a cover constraints is a hard 
constraint we simply set the weight to a very high number (significantly higher than 
any of the other weights). 

The significant advantage of this model is that it can incorporate the requirements of 
many different workplaces without needing to be extended. This means that the 
algorithm does not need to be modified when a new constraint is encountered as long 
as it can be modelled as a regular expression. For example, the benchmark instances 
discussed in the next section could be described as different problems because most of 
them have a different set of constraints and objectives. However, we were able to 
model them all using this single model. 

3. Benchmark Instances 

In order to validate our algorithms and encourage more competition and collaboration 
between researchers working on rostering we have built a collection of diverse and 
challenging benchmark instances. The collection has grown over several years and 
has been drawn from various sources such as industrial collaborators (including 
software companies and hospitals), scientific publications and other researchers. The 
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collection continues to grow, is currently drawn from thirteen different countries and 
the majority of the data sets are based on real world rostering scenarios. Table 1 lists 
the instances. As can be seen, they vary in the length of the planning horizon, the 
number of employees, the number of shift types and the number of skills. Each 
instance also varies in the number, priority and type of constraints and objectives 
present. The objectives were set by the organisation that provided the data. For 
example, some prefer to minimise overstaffing whereas other prefer to maximise staff 
satisfaction by setting the weights for those objectives higher instead. 
 

Instance Staff 
Shift 
types 

Length 
(days) 

Skill 
types 

Best 
known Ref 

Ozkarahan 14 2 7 2 0 [30] 

Musa 11 1 14 3 175 [29] 

Millar-2Shift-DATA1 8 2 14 1 0 [20] 

Millar-2Shift-DATA1.1 8 2 14 1 0 [20] 

LLR 27 3 7 1 301 [23] 

Azaiez 13 2 28 2 0 [2] 

GPost 8 2 28 1 5  

GPost-B 8 2 28 1 3  

QMC-1 19 8 28 1 13  

QMC-2 19 3 28 3 29  

WHPP 30 3 14 1 5 [36] 

BCV-3.46.2 46 3 26 1 894 [6] 

BCV-4.13.1 13 4 29 1 10 [6] 

SINTEF 24 5 21 1 0  

ORTEC01 16 4 31 1 270 [8] 

ORTEC02 16 4 31 1 270 [8] 

ERMGH 41 4 42 2 779  

CHILD 41 5 42 1 2001  

ERRVH 51 8 42 2 149  

HED01 20 5 31 2 136 [33] 

Valouxis-1 16 3 28 1 20 [35] 

Ikegami-2Shift-DATA1 28 2 30 9 0 [20] 

Ikegami-3Shift-DATA1 25 3 30 8 2 [20] 

Ikegami-3Shift-DATA1.1 25 3 30 8 3 [20] 

Ikegami-3Shift-DATA1.2 25 3 30 8 3 [20] 

BCDT-Sep 20 4 30 1 100 [5] 

MER 54 12 42 2 7081  

Table 1 Benchmark Instances 
 

The instances are available for download from http://www.cs.nott.ac.uk/~tec/NRP/, 
where all the required information on each instance, best solutions, visualisations and 
other software is also available. The data set files are not included within this paper 
because of their large size. 

Table 2 lists the instances used in the First International Nurse Rostering Competition. 
The instances were created by the competition organisers and not released before the 
competition. They are discussed further in Section 6. 
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Instance Staff 
Shift 
types 

Days Skills 
 

Instance Staff 
Shift 
types 

Days Skills 

sprint01 10 4 28 1 
 

medium01 31 4 28 1 

sprint02 10 4 28 1 
 

medium02 31 4 28 1 

sprint03 10 4 28 1 
 

medium03 31 4 28 1 

sprint04 10 4 28 1 
 

medium04 31 4 28 1 

sprint05 10 4 28 1 
 

medium05 31 4 28 1 

sprint06 10 4 28 1 
 

medium_late01 30 4 28 1 

sprint07 10 4 28 1 
 

medium_late02 30 4 28 1 

sprint08 10 4 28 1 
 

medium_late03 30 4 28 1 

sprint09 10 4 28 1 
 

medium_late04 30 4 28 1 

sprint10 10 4 28 1 
 

medium_late05 30 5 28 2 

sprint_late01 10 4 28 1 
 

long01 49 5 28 2 

sprint_late02 10 3 28 1 
 

long02 49 5 28 2 

sprint_late03 10 4 28 1 
 

long03 49 5 28 2 

sprint_late04 10 4 28 1 
 

long04 49 5 28 2 

sprint_late05 10 4 28 1 
 

long05 49 5 28 2 

sprint_late06 10 4 28 1 
 

long_late01 50 5 28 2 

sprint_late07 10 4 28 1 
 

long_late02 50 5 28 2 

sprint_late08 10 4 28 1 
 

long_late03 50 5 28 2 

sprint_late09 10 4 28 1 
 

long_late04 50 5 28 2 

sprint_late10 10 4 28 1 
 

long_late05 50 5 28 2 

Table 2 Competition Instances 

4. The Branch and Price Algorithm 
The implementation of the branch and price approach follows the previously 
published algorithms mentioned in section 1. However, quite a lot of time was spent 
improving the performance of the implementation. For example, profiling the 
algorithm reveals that during the column generation, typically about 5% of the 
computation time is spent re-solving the restricted master problem (using the simplex 
method) whereas the other 95% of the time is used in solving the sub-problems 
(generating the new columns using the dynamic programming algorithm). This meant 
that the performance of the algorithm could be most significantly improved through: 
 

1) Reducing the number of calls to the pricing problem solver.  
2) Improving the performance of the pricing problem solver. 

 
Stabilisation (reducing the oscillation of the dual values) was particularly important 
and effective for the first. For the second, additional heuristics and bounding methods 
were very effective, especially exploiting the fact that it is not necessary to find the 
most negative reduced cost column each time (that is, the pricing problem does not 
have to be solved to optimality until it is necessary to show that there are no more 
negative reduced cost columns). These heuristics are discussed in more detail in 
section 4.1. For the stabilisation, we used the method presented in [32] which is 
relatively straightforward to implement and does not depend on instance specific 
parameters but was also very effective. 
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To solve the master problem we used the simplex method of the open-source, Coin-
OR linear programming solver (clp) [1] which we found to be fast and stable. 

Within a time limit, two different heuristic branching strategies are applied in the 
branch and bound tree to try and find new solutions (upper bounds). For the first 
strategy, we simply branch on the variables in the master problem by selecting the 
variable that is closest to one. This strategy often quickly provides an upper bound but 
this upper bound can usually be improved by the second branching strategy. In the 
second strategy, we branch on individual employee-shift assignments (constraint 
branching). At each node in the tree, we select the employee-shift assignment that has 
the value closest to one when summing all the master problem variables (columns) 
that contain this assignment. Columns that do not contain this assignment are then 
removed from the master problem and when the master problem is re-solved the 
pricing problem solver only generates columns which contain this assignment (and 
any other forced assignments from ancestor nodes in the tree). We carried out some 
initial experiments with branching on the most fractional assignments (closest to 0.5) 
instead. There did not appear to be much difference in solution quality but it was 
slightly slower on average so chose to branch on assignments closest to one. 

The initial solution is provided by applying the variable depth search algorithm for 
five seconds. If a provable optimal solution (lower bound equal to upper bound) is not 
found within the time limit, then the best upper bound is returned. 

4.1. The Pricing Problem Solver 
We use a dynamic programming approach to solve the pricing problem. That is, to 
generate new columns where the columns are basically new work schedules (also 
called shift patterns) for individual employees. The problem can be classified as a 
resource constrained shortest path problem. Figure 4 shows an example graph for an 
instance with three shift types (Early, Day and Night). A path consists of n connected 
nodes between the source and sink node where n is the number of days in the planning 
horizon. Each shift type and a day off represent the nodes that can be chosen on each 
day. Resources are collected along the path depending on which nodes are part of that 
path. 

 
Figure 4 Example graph for the shortest path problem 

 

The idea behind dynamic programming is to use bounding and dominance to prune 
paths/nodes that can be proven to be unnecessary to expand. Although dynamic 
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programming can be very effective at solving certain types of problem, in worst cases 
the number of paths can still grow exponentially. 

An interesting feature of our implementation is that we solve the problem over a 
number of iterations where at each iteration the number of paths that can be expanded 
is restricted to a maximum and the paths to expand are selected heuristically. If at the 
end of an iteration the maximum limit was not reached then the problem was solved. 
Otherwise, we try again with a higher limit but possibly also with a new upper bound 
(i.e. the best solution found at the previous limit). We also resume the search at the 
point the limit was reached in order to avoid superfluous repetitions. An outline of the 
algorithm is provided by Figure 5. and discussed in more detail below. 
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1. FUNCTION GenerateShiftPattern 
    Returns:  
     An array of solutions with an objective function value less than  
     InitialUpperBound. The objective function value = cost of  
     the pattern + dual costs for that pattern.  
     If MustBeOptimal is true then it will return the pattern with the  
     lowest objective function value.  
     If there are no solutions with objective function value less than  
     InitialUpperBound then it returns an empty array. 
    Input parameters: 
     The employee to generate the shift pattern for. 
     Dual costs for each possible assignment on each day (may be negative). 
     Branching constraints (assignments which must or must not be made). 
     A bound (InitialUpperBound). The objective function value of any  
     solutions returned must be less than this. 
     A Boolean value (MustBeOptimal) to indicate whether it must return the  
     optimal solution or the first set of solutions it finds with objective  

 function value < InitialUpperBound. 
2. SET BestUpperBound := InitialUpperBound 
3. SET MaxArraySizes := { 32, 128, 512, 2048, 8192, infinity } 
4. Create four empty arrays (CurrentArray, NextArray, Solutions and BestSolutions) 
5. Create an empty shift pattern and make any assignments which must be made 

due to branching constraints (or other constraints) and add it to NextArray 
6. FOR each MaxArraySize in MaxArraySizes 
7.   SET MaxArraySizeExceeded := false 
8.   Clear the Solutions array 
9.   FOR each day (Day) in the planning period 
10.     SET CurrentArray as NextArray 
11.     SET NextArray as an empty array 
12.     FOR each partially completed shift pattern (Pattern) in CurrentArray 
13.       FOR each possible shift assignment on Day (including a day off) 
14.         Make a copy of Pattern (NewPattern) and add the assignment to NewPattern 
15.         Calculate a lower bound for this pattern and check for any constraint  

        violations. If there is a violation or the bound is >= BestUpperBound then  
        discard NewPattern and GOTO LABEL TryNextAssignment (29.) 

16.         IF Day is the last day in the planning period THEN 
17.           Add NewPattern to Solutions 
18.         ELSE 
19.           Do dominance checks to see if NewPattern should be added to NextArray  

          and if there are any patterns in NextArray that are dominated and can be  
          removed 

20.           IF NewPattern needs to be added THEN 
21.             IF Adding NewPattern (and removing any dominated patterns) would cause  

              MaxArraySize to be exceeded THEN 
22.               SET MaxArraySizeExceeded := true 
23.               Test heuristically replacing a pattern in NextArray with NewPattern 
24.               GOTO LABEL TryNextAssignment (29.) 
25.             END IF 
26.             Add NewPattern to NextArray and remove any that are dominated 
27.           END IF 
28.         END ELSE 
29.         LABEL TryNextAssignment 
30.       END FOR 
31.     END FOR 
32.     IF NextArray is empty THEN 
33.       GOTO 46. 
34.     END IF 
35.   END FOR 
36.   IF Solutions is not empty THEN 
37.     IF MaxArraySizeExceeded = false OR MustBeOptimal = false THEN 
38.       RETURN Solutions 
39.     END IF 
40.     SET BestSolutionCost := the lowest obj. function value in Solutions 
41.     IF BestSolutionCost < BestUpperBound THEN 
42.       SET BestUpperBound := BestSolutionCost 
43.     END IF 
44.   Clear the BestSolutions array and add the elements from Solutions 
45.   ELSE 
46.     IF MaxArraySizeExceeded = false THEN 
47.       RETURN BestSolutions 
48.     END IF 
49.   END ELSE 
50. END FOR 
51. RETURN BestSolutions 
52. END FUNCTION 

Figure 5 Pseudocode for the shift pattern generating algorithm 
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The algorithm is able to solve the problem to proven optimality or just return the first 
set of solutions it finds with an objective function value below a bound. This bound 
and the flag indicating whether to solve it to optimality are passed as parameters to 
the algorithm. The other algorithm parameters are variables which may change 
between calls to the method: The dual costs (from the cover constraints) and any 
branching constraints. (The branching constraints are assignments which must or must 
not be made in the shift pattern because they are fixed in the branch and bound tree). 

As already discussed, in the column generation algorithm it is not necessary to solve 
the pricing problem to optimality every time (that is, it does not need to find the most 
negative reduced cost column) but any negative reduced cost columns are acceptable.  

The maximum array sizes to use at each iteration of the algorithm is set at step 3. In 
the pseudocode, the values shown are: { 32, 128, 512, 2048, 8192, infinity } 
which is the setting used for the results shown in section 5. Some testing was 
performed varying the size of this set and the values in it but no clear best setting was 
found when tested over all instances. However, a general strategy of starting with 
small values which are solved very quickly before gradually moving to the larger 
values appears to work best. 

At step 15 (i.e. after a shift assignment is made), a lower bound is calculated (a 
minimum objective function value) for a partially complete pattern by looking at the 
assignments already made, the objectives for that employee and the dual costs. This 
lower bound is then used to discard the pattern if it is greater than or equal to the best 
upper bound found so far. (Although not shown in the pseudocode this exact same 
procedure is also done at step 5 where other assignments are made due to branching 
constraints). 

After creating a new partial pattern, it is necessary to compare this pattern to the 
partial patterns in NextArray for dominance. The dominance checking simply 
involves comparing the patterns by examining the values of the variables erRN  and 

ewWN used in the objectives (1c) to (1f) for the employee e that the pattern is being 

generated for. For example, if it is a minimum objective (1f) or (1d) then the pattern 
with the higher variable value is dominant for that objective. If it is a maximum 
objective (1c) or (1e) then the pattern with the lower variable value dominates. A 
pattern dominates another pattern if it dominates for at least one objective and is not 
dominated on any other objectives. 

If the pattern is dominated by an existing pattern then it is discarded (to significantly 
increase the computation speed the pattern that dominates it is moved to the start of 
the NextArray, this has the effect that the next time the array is iterated through to 
check for dominance there is a greater chance it finds a dominant pattern more 
quickly). If the pattern dominates any existing patterns then it is added to NextArray 
and all the patterns that it dominates are removed. If it is identical to an existing 
pattern (that is, neither are better for any of the objectives) then it is also discarded. If 
it is incomparable to an existing pattern (that is, they each are better on an objective or 
cannot yet be compared for an objective) then it must be added. It may still dominate 
other patterns though which can be removed. It is also useful to note that when 
comparing two patterns, an objective which can be shown to be already satisfied in 
both patterns can be ignored in the comparison. 
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Dominance checking is the most time consuming part of the algorithm, particularly 
when the number of patterns to compare is large. A number of suggestions have been 
made in the literature to speed up this process. These include maintaining sorted lists 
or checking for dominance at different points in the algorithm. However, the 
feasibility of these suggestions depends upon the type and number of objectives 
present. We perform the dominance testing at step 19 but it is also possible to 
compare patterns at steps 30 and 31 instead. 

At step 23, the new pattern cannot be added to NextArray as it would cause the 
maximum array size to be exceeded. However, the pattern with the worst objective 
function value is replaced with the new pattern if it has a better objective function 
value. This is another heuristic rule which improves the speed of the algorithm. 

At step 24 the algorithm moves to step 29 and tries a different shift assignment at the 
current day (TryNextAssignment is simply a label at the end of that loop which in 
effect immediately moves to the start of the loop and tries the next shift type). During 
development we did experiment though within going to step 9 (move to the next day) 
instead of going to the step 29 as it may appear more efficient to not test every shift 
type if we already have a valid pattern. However, it was found to be much more 
effective to continue generating new patterns by going to step 29. This is because we 
are testing all possible shift types which although slower, as a result of the heuristics 
and rules within lines 16-27 the patterns which remain by the next day (step 9) are the 
dominant patterns with lower partial objective function values. 

It is also worth mentioning that although adding the heuristics described had the most 
significant impact on the performance of the algorithm, how the algorithm is 
implemented can also have an effect on the speed of the algorithm. This is particularly 
the case with respect to memory management and the types of data structures used. 

5. Results 

In addition to providing results for the branch and price algorithm, we also compare 
them to an ejection chain based approach called variable depth search (VDS). 
Although the core of the algorithm is an ejection chain method, it contains a number 
of other features that have been added since it was originally described in [10]. These 
include incorporating a dynamic programming method into an iterative constructive 
method at the start of the algorithm. (This is the same dynamic programming 
algorithm used to solve the pricing problem in the branch and price method). A 
solution disruption and repair method (based on [8]) has also been added to extend the 
algorithm if the time limit is not exceeded and some fast, hill climbing methods which 
use the search neighbourhoods described in [7] have been incorporated too. The 
search neighbourhoods are defined by the assignment or de-assignment of shifts to 
employees or the swapping of two shifts between two employees. Additional 
neighbourhoods are then defined by extending these search neighbourhoods by 
considering assignments, de-assignments and swaps of shifts on multiple adjacent 
days (sometimes called block moves). 

The variable depth search operates by taking these individual moves and chaining 
them into a single much larger move in order to escape from the local minima that 
they would otherwise be restricted to. Heuristics are used to dynamically select which 
moves to link together. When a local minimum is reached for this larger chain 
neighbourhood a re-start heuristic is used. The mechanism involves completely un-
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assigning all the shifts assigned to a small number of employees and then re-building 
their schedules using the dynamic programming method. 

For the first set of results and comparisons we applied the branch and price algorithm 
to each benchmark instance. We then repeated the experiments with the VDS method 
but setting its maximum time limit parameter to exactly the same amount of time as 
used by the branch and price algorithm. The results are shown in Table 3.  

The instances in Table 3 are ordered on our estimated difficulty in solving them based 
on all the testing we have done (note that this does not correspond only to their size). 
The problem is a minimisation problem and results in bold indicate optimal solutions. 
All experiments were performed on a desktop PC with an Intel Core 2 Duo 2.83GHz 
processor. 
 

  Branch and Price VDS 

Instance 
LB (root 

node) 
UB t (s) UB t (s) 

Ozkarahan 0 0 < 0.1 0 0.1 

Musa 175 175 < 0.1 175 0.1 

Millar-2Shift-DATA1 0 0 < 0.1 300 0.1 

Millar-2Shift-DATA1.1 0 0 < 0.1 0 0.02 

LLR 301 301 0.8 302 0.8 

Azaiez 0 0 0.3 3 0.3 

GPost 5 5 2.0 42 2.0 

GPost-B 3 3 29.3 6 29.3 

QMC-1 12.5 13 57.6 30 57.6 

QMC-2 29 29 1.9 39 1.9 

WHPP 5 5 17.6 2012 17.6 

BCV-3.46.2 894 894 8.3 895 8.3 

BCV-4.13.1 10 10 892.7 10 892.7 

SINTEF 0 0 10.5 13 10.5 

ORTEC01 270 270 69.3 485 69.3 

ORTEC02 270 270 105.1 540 105.1 

ERMGH 779 779 19.7 779 19.7 

CHILD 149 149 19.8 161 19.8 

ERRVH 2001 2001 976.0 2057 976 

HED01 136 136 396.0 148 396 

Valouxis-1 8 80 909.6 60 909.6 

Ikegami-2Shift-DATA1 0 0 41.7 1 41.7 

Ikegami-3Shift-DATA1 2 2 597.8 13 597.8 

Ikegami-3Shift-DATA1.1 3 4 995.2 14 995.2 

Ikegami-3Shift-DATA1.2 3 5 5411.9 9 5411.9 

BCDT-Sep 100 100 6239.5 200 6239.5 

MER 7079 7081 36002.7 7185 36002.7 

Table 3 Results for B&P and VDS on Benchmark Instances 
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For the branch and price we have also included the lower bounds found at the root 
node of the branch and bound tree (that is, before the integer constraints must be 
satisfied). The lower bounds are very close (often equal) to the optimal solution 
objective function value. The branch and price method is able to solve most of the 
instances to optimality but the computation time varies from less than one tenth of a 
second up to ten hours on the hardest instance. On the largest (and hardest) instance 
we set a ten hour time limit as beyond this, in testing, the algorithm had previously 
encountered a pricing problem in this instance for which the dynamic programming 
method ran out of memory (using over 2GB). This was because the size of the state 
space for the dynamic programming method is related to the number of shift types and 
the length of the planning period and this instance has twelve shift types and a six 
week horizon. Despite this, a very good upper bound can still be found for this 
instance within the ten hours.  

For some of the easier instances the solutions were actually integer at the root node 
and so no branching was necessary. Others were slightly fractional but could be made 
feasible and optimal quite quickly in the branch and bound tree. The harder instances 
were very fractional though and the algorithm had to go deep in the tree to find an 
upper bound. 

The variable depth search solves some of the easier instances in less than a second but 
compared to the branch and price some of the other results are worse. Despite this it is 
still worth noting that all these solutions are far better than could be achieved by hand 
(and of course in much less time also). One apparently anomalous result is the result 
for WHPP which appears significantly worse. However, in this instance the weights 
for the objectives are set such that some of the objectives have a weight of one and all 
others have a weight of 1000. The higher weighted objective appears to be quite 
difficult to completely satisfy such that near optimal solutions in terms of the number 
of objectives satisfied appear quite sub-optimal in terms of the objective function 
value. Some of the other instances also have similar large steps in weights and 
therefore also objective functions. 

Only on one instance (Valouxis-1) does the variable depth search find a better 
solution than the branch and price method but there does not appear to be an obvious 
reason why it outperforms on this instance. 

In the results, for both the algorithms we chose a single seed and identical parameter 
settings for every instance. That is, we did not perform many runs with different 
settings and chose the best result from each setting. For the instances Valouxis-1, 
Ikegami-3Shift-DATA1.1, Ikegami-3Shift-DATA1.2 on which the branch and price 
did not find the optimal solution though, it has also found the optimal solutions too in 
approximately the same computation times but with different algorithm settings such 
as different seeds. 

For a second set of experiments we restricted the algorithms to shorter computation 
times. Based on feedback from end users we chose 30 seconds and 10 minutes. The 
feedback received suggested that if users want good solutions quickly they prefer not 
to wait more than 30 seconds. If they are willing to wait a bit longer for optimal or 
near-optimal solutions they generally prefer not to wait more than approximately 10 
minutes. The results are shown in  

  Branch and price VDS 
Instance UB t (s) UB t (s) UB t (s) UB t (s) 
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Ozkarahan 0 < 0.1 0 < 0.1 0 0.1 0 0.1 

Musa 175 < 0.1 175 < 0.1 175 30.0 175 600.0 

Millar-2Shift-DATA1 0 < 0.1 0 < 0.1 0 0.8 0 0.8 

Millar-2Shift-DATA1.1 0 < 0.1 0 < 0.1 0 < 0.1 0 < 0.1 

LLR 301 0.8 301 0.8 301 30.0 301 600.0 

Azaiez 0 0.3 0 0.3 0 12.1 0 12.1 

GPost 5 2.0 5 2.0 16 30.0 8 600.0 

GPost-B 3 29.3 3 29.3 6 30.0 6 600.0 

QMC-1 48 30.0 13 57.6 36 30.0 16 600.0 

QMC-2 29 1.9 29 1.9 31 30.0 30 600.0 

WHPP 5 17.6 5 17.6 2001 30.0 5 600.0 

BCV-3.46.2 894 8.3 894 8.3 895 30.0 895 600.0 

BCV-4.13.1 10 30.0 10 30.0 10 30.0 10 600.0 

SINTEF 0 10.5 0 10.5 6 30.0 2 600.0 

ORTEC01 516 30.0 270 69.3 405 30.0 465 600.0 

ORTEC02 1550 30.0 270 105.0 570 30.0 510 600.0 

ERMGH 779 19.7 779 19.7 779 30.0 779 600.0 

CHILD 149 19.8 149 19.8 161 30.0 161 600.0 

ERRVH 12622 30.0 2189 600.0 2380 30.0 2058 600.0 

HED01 201 30.0 136 396.0 168 30.0 148 600.0 

Valouxis-1 340 30.0 160 600.0 120 30.0 60 600.0 

Ikegami-2Shift-DATA1 16 30.0 0 41.7 6 30.0 0 327.7 

Ikegami-3Shift-DATA1 47 30.0 2 597.8 32 30.0 13 600.0 

Ikegami-3Shift-DATA1.1 38 30.0 23 600.0 32 30.0 14 600.0 

Ikegami-3Shift-DATA1.2 35 30.0 26 600.0 37 30.0 9 600.0 

BCDT-Sep 500 30.0 330 600.0 440 30.0 210 600.0 

MER 14217 30.0 12663 600.0 8759 30.0 7187 600.0 

Table 4. 
 
  Branch and price VDS 
Instance UB t (s) UB t (s) UB t (s) UB t (s) 

Ozkarahan 0 < 0.1 0 < 0.1 0 0.1 0 0.1 

Musa 175 < 0.1 175 < 0.1 175 30.0 175 600.0 

Millar-2Shift-DATA1 0 < 0.1 0 < 0.1 0 0.8 0 0.8 

Millar-2Shift-DATA1.1 0 < 0.1 0 < 0.1 0 < 0.1 0 < 0.1 

LLR 301 0.8 301 0.8 301 30.0 301 600.0 

Azaiez 0 0.3 0 0.3 0 12.1 0 12.1 

GPost 5 2.0 5 2.0 16 30.0 8 600.0 

GPost-B 3 29.3 3 29.3 6 30.0 6 600.0 

QMC-1 48 30.0 13 57.6 36 30.0 16 600.0 

QMC-2 29 1.9 29 1.9 31 30.0 30 600.0 

WHPP 5 17.6 5 17.6 2001 30.0 5 600.0 

BCV-3.46.2 894 8.3 894 8.3 895 30.0 895 600.0 

BCV-4.13.1 10 30.0 10 30.0 10 30.0 10 600.0 

SINTEF 0 10.5 0 10.5 6 30.0 2 600.0 
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ORTEC01 516 30.0 270 69.3 405 30.0 465 600.0 

ORTEC02 1550 30.0 270 105.0 570 30.0 510 600.0 

ERMGH 779 19.7 779 19.7 779 30.0 779 600.0 

CHILD 149 19.8 149 19.8 161 30.0 161 600.0 

ERRVH 12622 30.0 2189 600.0 2380 30.0 2058 600.0 

HED01 201 30.0 136 396.0 168 30.0 148 600.0 

Valouxis-1 340 30.0 160 600.0 120 30.0 60 600.0 

Ikegami-2Shift-DATA1 16 30.0 0 41.7 6 30.0 0 327.7 

Ikegami-3Shift-DATA1 47 30.0 2 597.8 32 30.0 13 600.0 

Ikegami-3Shift-DATA1.1 38 30.0 23 600.0 32 30.0 14 600.0 

Ikegami-3Shift-DATA1.2 35 30.0 26 600.0 37 30.0 9 600.0 

BCDT-Sep 500 30.0 330 600.0 440 30.0 210 600.0 

MER 14217 30.0 12663 600.0 8759 30.0 7187 600.0 

Table 4 Results for B&P and VDS (30s & 10min) on Benchmark Instances 
 
The results in Table 4 show that (as would be expected) the more computation time 
provided, the better the solutions. When the computation time is increased to ten 
minutes, the branch and price method is able to further improve twelve instances. 
Increasing the computation time to ten minutes for the VDS method further improves 
fifteen instances.  
 

Over 30 seconds the branch and price is better on eight instances, equal on eight and 
worse on eleven. Over ten minutes it is better on eleven instances, equal on ten and 
worse on six. On all instances where the algorithms are equal they both found the 
optimal solutions. It is also evident that under both time restrictions the VDS is 
generally better on the larger instances and the branch and price outperforms on the 
smaller instances. It is also interesting to note that if the branch and price does not 
find the optimal solution within the time limit, the best upper bound it returns is 
generally worse than the solution found by the VDS in the same time. This suggests 
the potential benefit of using both algorithms in parallel if possible. 

One apparently anomalous result is for the VDS on the ORTEC01 instance where the 
result is better for 30 seconds versus ten minutes. This is, however, correct. The VDS 
contains heuristics which automatically adjust based on the pre-defined computation 
time and the instance size. In this case the heuristic worked very well on this instance. 

6. 2010 International Nurse Rostering Competition 

In 2010 the First International Nurse Rostering Competition was held. The 
competition consisted of three ‘tracks’ each with different instances. For the first track 
(sprint) the algorithms were allowed a maximum of ten seconds computation time to 
solve each instance. For the second track (medium) the algorithms were allowed ten 
minutes and for the third track (long) ten hours were permitted. A number of instances 
for each track were released at the start of the competition and at the end competitors 
submitted their best solutions found within the time allowed for each instance. The 
results for the top five algorithms were verified and then tested by the organisers on 
some hidden instances to produce the final rankings for each track. We entered the 
competition using both the branch and price and the variable depth search algorithms. 
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We used the same model as developed for the benchmark instances to model the 
competition instances and then tested the variable depth search and branch and price 
algorithms on them. The results1 are shown in Table 5 and Table 6. 
 

Instance LB (root node) UB t (s) 
sprint01 56 56 32.3 
sprint02 58 58 16.8 
sprint03 51 51 61.6 
sprint04 58.5 59 29.6 
sprint05 57 58 270.4 
sprint06 54 54 27.4 
sprint07 56 56 29.6 
sprint08 56 56 14.0 
sprint09 55 55 20.2 
sprint10 52 52 22.9 
sprint_late01 37 37 25.0 
sprint_late02 41.4 42 16.1 
sprint_late03 47.83 48 24.0 
sprint_late04 72.5 73 131.1 
sprint_late05 43.67 44 29.2 
sprint_late06 41.5 42 151.4 
sprint_late07 42 42 17.9 
sprint_late08 17 17 10.3 
sprint_late09 17 17 22.8 
sprint_late10 42.86 43 27.9 
medium01 240 240 34.2 
medium02 239.25 240 41.1 
medium03 235.5 236 49.6 
medium04 236.22 237 171.3 
medium05 302.1 303 150.7 
medium_late01 156 157 600.0 
medium_late02 18 18 17.1 
medium_late03 28.25 29 94.0 
medium_late04 34.33 35 152.2 
medium_late05 106.67 107 189.0 
long01 197 197 84.9 
long02 218.5 219 108.2 
long03 240 240 69.9 
long04 303 303 120.3 
long05 284 284 84.4 
long_late01 235 235 162.8 
long_late02 229 229 590.9 
long_late03 218.5 220 600.2 
long_late04 220.6666667 221 188.0 
long_late05 82.5 83 373.7 

Table 5. Results of the branch and price applied to the competition instances. 
 
As shown in Table 5, although the branch and price method could solve most of the 
instances to provable optimality, for the sprint instances the time required was longer 
than the maximum allowed of ten seconds. Therefore, for those instances we used the 

                                                 
1 The solutions are also available online at http://www.cs.nott.ac.uk/~tec/ and also on request from the 
authors. 
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variable depth search. The results are shown in Table 6 (we have also included the 
results of testing the variable depth search on the instances within the competition 
time limits). 

 
Instance UB t (s) Instance UB t (s) 
sprint01 56 10 medium01 244 600 
sprint02 58 10 medium02 241 600 
sprint03 51 10 medium03 238 600 
sprint04 59 10 medium04 240 600 
sprint05 58 10 medium05 308 600 
sprint06 54 10 medium_late01 187 600 
sprint07 56 10 medium_late02 22 600 
sprint08 56 10 medium_late03 46 600 
sprint09 55 10 medium_late04 49 600 
sprint10 52 10 medium_late05 161 600 
sprint_late01 37 10 long01 198 36000 
sprint_late02 42 10 long02 223 36000 
sprint_late03 48 10 long03 242 36000 
sprint_late04 75 10 long04 305 36000 
sprint_late05 44 10 long05 286 36000 
sprint_late06 42 10 long_late01 286 36000 
sprint_late07 42 10 long_late02 290 36000 
sprint_late08 17 10 long_late03 290 36000 
sprint_late09 17 10 long_late04 280 36000 
sprint_late10 43 10 long_late05 110 36000 

Table 6. Results of the variable depth search applied to the competition instances. 
 

In Table 7, we show the rankings of the solutions we submitted for the instances 
released by the competition organisers (fourteen competitors entered the competition). 
 

Instance Solution Ranking Instance Solution Ranking 
sprint01 56 1st = medium01 240 1st = 

sprint02 58 1st = medium02 240 1st = 

sprint03 51 1st = medium03 236 1st = 

sprint04 59 1st = medium04 237 1st = 

sprint05 58 1st = medium05 303 1st = 

sprint06 54 1st = medium_late01 157 1st 

sprint07 56 1st = medium_late02 18 1st 

sprint08 56 1st = medium_late03 29 1st 

sprint09 55 1st = medium_late04 35 1st 

sprint10 52 1st = medium_late05 107 1st 

sprint_late01 37 1st = long01 197 1st = 

sprint_late02 42 1st = long02 219 1st = 

sprint_late03 48 1st = long03 240 1st = 

sprint_late04 75 1st long04 303 1st = 

sprint_late05 44 1st = long05 284 1st = 

sprint_late06 42 1st = long_late01 235 1st 
sprint_late07 42 1st long_late02 229 1st 

sprint_late08 17 1st = long_late03 220 1st 

sprint_late09 17 1st = long_late04 221 1st 

sprint_late10 43 1st long_late05 83 1st = 

Table 7. Competition Ranking 
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On every instance our algorithms were first or first equal. However, in the final 
rankings we did not do so well due to some changes the organisers made to the hidden 
instances. For the majority of the hidden instances, the start date of the planning 
horizon was changed (but not the horizon length). We did not foresee this and as a 
result we incorrectly modelled some of the constraints relating to weekends. As such 
our solvers’ objective function values for nearly all the hidden instances was 
incorrect, which clearly had a very adverse effect on the final rankings (our final 
competition rankings were: sprint: 4th, medium: 2nd, long: 2nd). 

7. Conclusion 

We have presented new results for benchmark nurse rostering problems which will be 
particularly useful to other researchers. The results also show that a branch and price 
method can solve some instances very effectively. For other instances the time and 
resource requirements may be restrictive though. However, with new heuristics and 
other new ideas it may be possible to improve the performance further. For example, 
more advanced branching schemes in the branch and bound tree or decomposing the 
problem by splitting up the planning period may yield improvements. Although the 
variable depth search is not as successful as the branch and price on some instances, it 
is still a robust solver and able to find good solutions quickly. Another avenue for 
future research may be further integration of the two algorithms. 

 

Within both algorithms a dynamic programming method is used which has also been 
introduced. The algorithm uses a number of novel ideas and heuristics which we 
believe are general enough to be adapted to other problem domains also.  

All the instances tested were modelled using a generic model, at the core of which is a 
regular expression constraint. Although we cannot claim to be the first to apply this 
concept to staff scheduling problems we have expanded the idea to make it even more 
powerful and widely adoptable.  

Finally, Figure 6 is a screenshot of a modelling tool for rostering problems (Roster 
Booster). The software features the variable depth search algorithm and the column 
generation algorithm (for calculating lower bounds) presented here, and is freely 
available for download at the website of Staff Roster Solutions Limited 
(http://www.staffrostersolutions.com). (Staff Roster Solutions is a spin-out company 
formed by the University of Nottingham to commercially license and develop its 
research on rostering algorithms such as that presented here). 
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Figure 6 Roster Booster screenshot 
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